Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen.

Identifieur interne : 004083 ( Main/Exploration ); précédent : 004082; suivant : 004084

Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen.

Auteurs : Laigeng Li [États-Unis] ; Xiaofei Cheng ; Shanfa Lu ; Tomoyuki Nakatsubo ; Toshiaki Umezawa ; Vincent L. Chiang

Source :

RBID : pubmed:15870094

Descripteurs français

English descriptors

Abstract

Cinnamoyl co-enzyme A reductase (CCR), one of the key enzymes involved in the biosynthesis of monolignols, has been thought to catalyze the conversion of several cinnamoyl-CoA esters to their respective cinnamaldehydes. However, it is unclear which cinnamoyl-CoA ester is metabolized for monolignol biosynthesis. A xylem-specific CCR cDNA was cloned from aspen (Populus tremuloides) developing xylem tissue. The recombinant CCR protein was produced through an Escherichia coli expression system and purified to electrophoretic homogeneity. The biochemical properties of CCR were characterized through direct structural corroboration and quantitative analysis of the reaction products using a liquid chromatography-mass spectrometry system. The enzyme kinetics demonstrated that CCR selectively catalyzed the reduction of feruloyl-CoA from a mixture of five cinnamoyl CoA esters. Furthermore, feruloyl-CoA showed a strong competitive inhibition of the CCR catalysis of other cinnamoyl CoA esters. Importantly, when CCR was coupled with caffeoyl-CoA O-methyltransferase (CCoAOMT) to catalyze the substrate caffeoyl-CoA ester, coniferaldehyde was formed, suggesting that CCoAOMT and CCR are neighboring enzymes. However, the in vitro results also revealed that the reactions mediated by these two neighboring enzymes require different pH environments, indicating that compartmentalization is probably needed for CCR and CCoAOMT to function properly in vivo. Eight CCR homologous genes were identified in the P. trichocarpa genome and their expression profiling suggests that they may function differentially.

DOI: 10.1093/pcp/pci120
PubMed: 15870094


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen.</title>
<author>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, NC 27695-7247, USA. Laigeng_Li@ncsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, NC 27695-7247</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Xiaofei" sort="Cheng, Xiaofei" uniqKey="Cheng X" first="Xiaofei" last="Cheng">Xiaofei Cheng</name>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
</author>
<author>
<name sortKey="Nakatsubo, Tomoyuki" sort="Nakatsubo, Tomoyuki" uniqKey="Nakatsubo T" first="Tomoyuki" last="Nakatsubo">Tomoyuki Nakatsubo</name>
</author>
<author>
<name sortKey="Umezawa, Toshiaki" sort="Umezawa, Toshiaki" uniqKey="Umezawa T" first="Toshiaki" last="Umezawa">Toshiaki Umezawa</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15870094</idno>
<idno type="pmid">15870094</idno>
<idno type="doi">10.1093/pcp/pci120</idno>
<idno type="wicri:Area/Main/Corpus">004066</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004066</idno>
<idno type="wicri:Area/Main/Curation">004066</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004066</idno>
<idno type="wicri:Area/Main/Exploration">004066</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen.</title>
<author>
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, NC 27695-7247, USA. Laigeng_Li@ncsu.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, NC 27695-7247</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cheng, Xiaofei" sort="Cheng, Xiaofei" uniqKey="Cheng X" first="Xiaofei" last="Cheng">Xiaofei Cheng</name>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
</author>
<author>
<name sortKey="Nakatsubo, Tomoyuki" sort="Nakatsubo, Tomoyuki" uniqKey="Nakatsubo T" first="Tomoyuki" last="Nakatsubo">Tomoyuki Nakatsubo</name>
</author>
<author>
<name sortKey="Umezawa, Toshiaki" sort="Umezawa, Toshiaki" uniqKey="Umezawa T" first="Toshiaki" last="Umezawa">Toshiaki Umezawa</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
</analytic>
<series>
<title level="j">Plant & cell physiology</title>
<idno type="ISSN">0032-0781</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acyl Coenzyme A (chemistry)</term>
<term>Acyl Coenzyme A (metabolism)</term>
<term>Aldehyde Oxidoreductases (genetics)</term>
<term>Aldehyde Oxidoreductases (isolation & purification)</term>
<term>Aldehyde Oxidoreductases (metabolism)</term>
<term>Catalysis (MeSH)</term>
<term>Chromatography, High Pressure Liquid (MeSH)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Esters (chemistry)</term>
<term>Esters (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Hydrogen-Ion Concentration (MeSH)</term>
<term>Kinetics (MeSH)</term>
<term>Lignin (biosynthesis)</term>
<term>Mass Spectrometry (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Populus (classification)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Sequence Homology, Nucleic Acid (MeSH)</term>
<term>Substrate Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acyl coenzyme A (composition chimique)</term>
<term>Acyl coenzyme A (métabolisme)</term>
<term>Aldehyde oxidoreductases (génétique)</term>
<term>Aldehyde oxidoreductases (isolement et purification)</term>
<term>Aldehyde oxidoreductases (métabolisme)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Catalyse (MeSH)</term>
<term>Chromatographie en phase liquide à haute performance (MeSH)</term>
<term>Cinétique (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Concentration en ions d'hydrogène (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Esters (composition chimique)</term>
<term>Esters (métabolisme)</term>
<term>Génome végétal (MeSH)</term>
<term>Lignine (biosynthèse)</term>
<term>Populus (classification)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Similitude de séquences d'acides nucléiques (MeSH)</term>
<term>Spectrométrie de masse (MeSH)</term>
<term>Spécificité du substrat (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Acyl Coenzyme A</term>
<term>Esters</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Aldehyde Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Aldehyde Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acyl Coenzyme A</term>
<term>Aldehyde Oxidoreductases</term>
<term>Esters</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Acyl coenzyme A</term>
<term>Esters</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Aldehyde oxidoreductases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Aldehyde oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acyl coenzyme A</term>
<term>Aldehyde oxidoreductases</term>
<term>Esters</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Catalysis</term>
<term>Chromatography, High Pressure Liquid</term>
<term>Cloning, Molecular</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genome, Plant</term>
<term>Hydrogen-Ion Concentration</term>
<term>Kinetics</term>
<term>Mass Spectrometry</term>
<term>Molecular Sequence Data</term>
<term>Sequence Homology, Nucleic Acid</term>
<term>Substrate Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Catalyse</term>
<term>Chromatographie en phase liquide à haute performance</term>
<term>Cinétique</term>
<term>Clonage moléculaire</term>
<term>Concentration en ions d'hydrogène</term>
<term>Données de séquences moléculaires</term>
<term>Génome végétal</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Similitude de séquences d'acides nucléiques</term>
<term>Spectrométrie de masse</term>
<term>Spécificité du substrat</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cinnamoyl co-enzyme A reductase (CCR), one of the key enzymes involved in the biosynthesis of monolignols, has been thought to catalyze the conversion of several cinnamoyl-CoA esters to their respective cinnamaldehydes. However, it is unclear which cinnamoyl-CoA ester is metabolized for monolignol biosynthesis. A xylem-specific CCR cDNA was cloned from aspen (Populus tremuloides) developing xylem tissue. The recombinant CCR protein was produced through an Escherichia coli expression system and purified to electrophoretic homogeneity. The biochemical properties of CCR were characterized through direct structural corroboration and quantitative analysis of the reaction products using a liquid chromatography-mass spectrometry system. The enzyme kinetics demonstrated that CCR selectively catalyzed the reduction of feruloyl-CoA from a mixture of five cinnamoyl CoA esters. Furthermore, feruloyl-CoA showed a strong competitive inhibition of the CCR catalysis of other cinnamoyl CoA esters. Importantly, when CCR was coupled with caffeoyl-CoA O-methyltransferase (CCoAOMT) to catalyze the substrate caffeoyl-CoA ester, coniferaldehyde was formed, suggesting that CCoAOMT and CCR are neighboring enzymes. However, the in vitro results also revealed that the reactions mediated by these two neighboring enzymes require different pH environments, indicating that compartmentalization is probably needed for CCR and CCoAOMT to function properly in vivo. Eight CCR homologous genes were identified in the P. trichocarpa genome and their expression profiling suggests that they may function differentially.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15870094</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>10</Month>
<Day>31</Day>
</DateCompleted>
<DateRevised>
<Year>2006</Year>
<Month>11</Month>
<Day>15</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0781</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>46</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Plant & cell physiology</Title>
<ISOAbbreviation>Plant Cell Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>1073-82</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Cinnamoyl co-enzyme A reductase (CCR), one of the key enzymes involved in the biosynthesis of monolignols, has been thought to catalyze the conversion of several cinnamoyl-CoA esters to their respective cinnamaldehydes. However, it is unclear which cinnamoyl-CoA ester is metabolized for monolignol biosynthesis. A xylem-specific CCR cDNA was cloned from aspen (Populus tremuloides) developing xylem tissue. The recombinant CCR protein was produced through an Escherichia coli expression system and purified to electrophoretic homogeneity. The biochemical properties of CCR were characterized through direct structural corroboration and quantitative analysis of the reaction products using a liquid chromatography-mass spectrometry system. The enzyme kinetics demonstrated that CCR selectively catalyzed the reduction of feruloyl-CoA from a mixture of five cinnamoyl CoA esters. Furthermore, feruloyl-CoA showed a strong competitive inhibition of the CCR catalysis of other cinnamoyl CoA esters. Importantly, when CCR was coupled with caffeoyl-CoA O-methyltransferase (CCoAOMT) to catalyze the substrate caffeoyl-CoA ester, coniferaldehyde was formed, suggesting that CCoAOMT and CCR are neighboring enzymes. However, the in vitro results also revealed that the reactions mediated by these two neighboring enzymes require different pH environments, indicating that compartmentalization is probably needed for CCR and CCoAOMT to function properly in vivo. Eight CCR homologous genes were identified in the P. trichocarpa genome and their expression profiling suggests that they may function differentially.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Laigeng</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Forest Biotechnology Group, Department of Forestry, North Carolina State University, Raleigh, NC 27695-7247, USA. Laigeng_Li@ncsu.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Xiaofei</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shanfa</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Nakatsubo</LastName>
<ForeName>Tomoyuki</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Umezawa</LastName>
<ForeName>Toshiaki</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AF217958</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2005</Year>
<Month>05</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Japan</Country>
<MedlineTA>Plant Cell Physiol</MedlineTA>
<NlmUniqueID>9430925</NlmUniqueID>
<ISSNLinking>0032-0781</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000214">Acyl Coenzyme A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004952">Esters</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>76109-04-1</RegistryNumber>
<NameOfSubstance UI="C022903">cinnamoyl-coenzyme A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.-</RegistryNumber>
<NameOfSubstance UI="D000445">Aldehyde Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.1.44</RegistryNumber>
<NameOfSubstance UI="C019904">cinnamoyl CoA reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000214" MajorTopicYN="N">Acyl Coenzyme A</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000445" MajorTopicYN="N">Aldehyde Oxidoreductases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002384" MajorTopicYN="N">Catalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002851" MajorTopicYN="N">Chromatography, High Pressure Liquid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004952" MajorTopicYN="N">Esters</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006863" MajorTopicYN="N">Hydrogen-Ion Concentration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013058" MajorTopicYN="N">Mass Spectrometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012689" MajorTopicYN="N">Sequence Homology, Nucleic Acid</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013379" MajorTopicYN="N">Substrate Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>11</Month>
<Day>1</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>5</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15870094</ArticleId>
<ArticleId IdType="pii">pci120</ArticleId>
<ArticleId IdType="doi">10.1093/pcp/pci120</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cheng, Xiaofei" sort="Cheng, Xiaofei" uniqKey="Cheng X" first="Xiaofei" last="Cheng">Xiaofei Cheng</name>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<name sortKey="Nakatsubo, Tomoyuki" sort="Nakatsubo, Tomoyuki" uniqKey="Nakatsubo T" first="Tomoyuki" last="Nakatsubo">Tomoyuki Nakatsubo</name>
<name sortKey="Umezawa, Toshiaki" sort="Umezawa, Toshiaki" uniqKey="Umezawa T" first="Toshiaki" last="Umezawa">Toshiaki Umezawa</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Li, Laigeng" sort="Li, Laigeng" uniqKey="Li L" first="Laigeng" last="Li">Laigeng Li</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004083 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004083 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15870094
   |texte=   Clarification of cinnamoyl co-enzyme A reductase catalysis in monolignol biosynthesis of Aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15870094" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020